Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship between the power-law recession scale parameter and catchment antecedent wetness varies depending on recession definition and fitting choices. Considering study results, we recommend a combination of four key methodological decisions to maximize the quality of fitted recession curves, and to minimize bias in the related populations of fitted recession parameters.more » « less
-
Abstract Predicting the proportion of the water year a given stream will remain at or above various flow thresholds is critically important for making sound water management decisions. Flow duration curves (FDCs) succinctly capture this information using all data available over some historical period, while annual flow duration curves (AFDCs) instead use data from each individual water year. Analyzing the population of AFDCs, and in particular the tails of this distribution, can allow water managers to better prepare for years with extreme streamflow conditions. However, long time series of observations are necessary to capture interannual streamflow variations and are problematic to obtain in rapidly changing and poorly gauged catchments. By incorporating a process‐based model to construct AFDCs based on daily rainfall statistics and flow recession characteristics, the proposed approach is a first step toward addressing this challenge. Results indicate that prediction performance varies substantially across flow quantiles and that the current model fails to properly capture the interannual variability of low flows. Numerical analyses attributed these errors to nonlinearity in storage‐discharge relation, rather than cross‐scale streamflow correlations and non‐Poissonian rainfall, explaining the origin of commonly observed heavy‐tailed behavior in low flow quantiles. We present a case study on hydroelectric power generation, showing that faithfully capturing both interannual streamflow variability and recession nonlinearity has important implications for installation profitability.more » « less
An official website of the United States government
